Order-disorder transition of aragonite nanoparticles in nacre.
نویسندگان
چکیده
Understanding nacre's bottom-up biomineralization mechanism, particularly, how individual aragonite platelets are formed, has long remained elusive due to its crystallographic peculiarity and structural complexity. Here we report that crystallographic order-disorder transition can be triggered within individual aragonite platelets in pristine nacre by means of heat treatment and/or inelastic deformation, offering a unique opportunity to discriminate mysterious aragonite nanoparticles in transmission electron microscopy. Our findings unambiguously uncover why aragonite nanoparticles in pristine nacre have long been inaccessible under TEM observation, which is attributed to the monocrystal-polycrystal duality of the aragonite platelet. The underlying physical mechanism for why an individual aragonite platelet adopts a highly oriented attachment of aragonite nanoparticles as its crystallization pathway is, for the first time, explained in terms of the thermodynamics. The finding of an order-disorder transition in nacre provides a new perspective for understanding the formation for other biominerals.
منابع مشابه
Unveiling the formation mechanism of pseudo-single-crystal aragonite platelets in nacre.
We demonstrate direct evidence that a single-crystal-like aragonite platelet is essentially assembled with aragonite nanoparticles. The aragonite nanoparticles are readily oriented and assembled into pseudo-single-crystal aragonite platelets via screw dislocation and amorphous aggregation, which are two dominant mediating mechanisms between nanoparticles during biomineralization. These findings...
متن کاملNanoscale Deformation and Toughening Mechanisms of Nacre
We found direct evidence that a single-crystal-like aragonite platelet is essentially assembled with aragonite nanoparticles. The aragonite nanoparticles are readily oriented and assembled into pseudo-single-crystal aragonite platelets via screw dislocation and amorphous aggregation, which are two dominant mediating mechanisms between nanoparticles during biomineralization. The heat treatment b...
متن کاملAragonite-associated biomineralization proteins are disordered and contain interactive motifs
MOTIVATION The formation of aragonite mineral in the mollusk shell or pearl nacre requires the participation of a diverse set of proteins that form the mineralized extracellular matrix. Although self-assembly processes have been identified for several nacre proteins, these proteins do not contain known globular protein-protein binding domains. Thus, we hypothesize that other sequence features a...
متن کاملThe growth of nacre in the abalone shell.
The process of mineral formation following periods of growth interruption (growth bands) is described. Flat pearl implantation as well as a new trepanning method are used to observe the transitory phases of calcium carbonate which nucleate and grow during this process. An initial random nucleation of the aragonite polymorph is observed followed by a transition towards spherulitic growth. During...
متن کاملDirect observation of the transition from calcite to aragonite growth as induced by abalone shell proteins.
The mixture of EDTA-soluble proteins found in abalone nacre are known to cause the nucleation and growth of aragonite on calcite seed crystals in supersaturated solutions of calcium carbonate. Past atomic force microscope studies of the interaction of these proteins with calcite crystals did not observe this transition because no information about the crystal polymorph on the surface was obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 109 2 شماره
صفحات -
تاریخ انتشار 2012